(Informal) Logic: Barocas et al. Ch. 1 WRIT 0590: Module 2.2

> Nikita Bezrukov University of Pennsylvania nikitab@sas.upenn.edu

> > January 21, 2025

Roadmap

Why Fairness Matters

Understanding the ML Pipeline

Fairness Concerns Real-World Examples Data & Measurement Pitfalls

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Takeaways

Conclusion

- Accuracy vs. fairness: Data-driven decisions often outperform human intuition on specific tasks, yet we worry about potential biases.
- High-stakes decisions: Admissions, hiring, lending, and sentencing profoundly affect people's lives.
- Potential harm: Faulty or biased decision-making—whether human or algorithmic—can perpetuate injustice.

ML in Decision-Making

Promise of ML:

- Uncover subtle factors humans might miss
- Potentially more "objective" or evidence-based

Reality of Bias:

- ML learns from historical data, which can carry forward existing inequities
- Inherent complexities around measuring human constructs (e.g., "creditworthiness")

Steps in the ML Pipeline

- 1. Measurement: Converting the real world into data.
 - Subjective choices: which variables to collect
 - Potential distortion or bias in data gathering
- 2. Learning: Using data to train a model.
 - Patterns are extracted—good or bad
 - Reflects statistical relationships in training data

3. Prediction & Action:

- Classification, regression, or ranking tasks
- Used for real-world decisions (e.g., lending, hiring)

4. Feedback:

- User outcomes or responses refine the model
- Risks reinforcing existing patterns if feedback is also biased

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Even well-intentioned ML applications can yield objectionable outcomes by perpetuating biases and injustices.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Historical biases in data
- Inadequate or skewed measurement
- Complex moral values overlooked

- Geographic disparity: Amazon's free same-day delivery once excluded predominantly Black neighborhoods
 - The company cited efficiency and cost, but the impact was racially skewed.
- Repurposed classification schemes: Datasets like ImageNet may contain outdated or stereotyped labels (e.g., gendered roles).
- Language translation: Translating between certain languages introduces gender stereotypes, reflecting biases in training text.

ML can't distinguish:

It will learn both helpful patterns and harmful stereotypes unless we intervene.

Human judgment vs. ML:

Judges may refuse to consider "predictive" factors like age in sentencing because of moral considerations.

Target Variables

Constructs vs. reality:

 "Creditworthiness" and "job performance" are human-defined concepts

Often rely on proxies (e.g., arrests for crime)

Risk of bias:

 Biased policing leads to over-representation of certain groups in arrest data

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Performance reviews might reflect supervisor stereotypes

Dataset-Level Challenges

Shifts in distributions:

A model trained on Dataset A often fails on Dataset B.

Sample size disparities:

 Minority groups are underrepresented, leading to higher error rates.

Proxies and redundant encodings:

Withholding "gender" does not remove bias—features like "age at first coding experience" may inadvertently reveal it.

No Easy Fix

Hiding sensitive attributes

Insufficient due to proxies in the data

Improving data diversity

Helps, but doesn't magically remove historical biases

Awareness of moral judgment

Some patterns are ethically off-limits or context-dependent

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fairness requires ongoing social, technical, and legal efforts.

Conclusion

- ML can amplify historical inequalities if not designed and monitored carefully.
- Ensuring fairness means critically examining:
 - How data is collected and measured
 - What target variables and proxies are used
 - Which moral and social factors are (or should be) ignored or included

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Key message: Data-driven does not automatically mean objective or fair.